Exercise 2.1.3

In the next three exercises, interpret $\dot{x}=\sin x$ as a flow on the x-axis.
(Acceleration)
a) Find the flow's acceleration \ddot{x} as a function of x.
b) Find the points where the flow has maximum positive acceleration.

Solution

Differentiate both sides with respect to t.

$$
\begin{aligned}
\frac{d}{d t}(\dot{x}) & =\frac{d}{d t}(\sin x) \\
\ddot{x} & =(\cos x) \cdot \frac{d}{d t}(x) \\
& =(\cos x) \cdot \dot{x} \\
& =(\cos x)(\sin x) \\
& =\frac{1}{2} \sin 2 x
\end{aligned}
$$

The greatest acceleration to the right occurs where \ddot{x} is maximum (and positive), that is, where $\sin 2 x=1$:

$$
\begin{aligned}
& 2 x=\frac{\pi}{2}+2 n \pi, \quad n=0, \pm 1, \pm 2, \ldots \\
& x=\frac{\pi}{4}+n \pi
\end{aligned}
$$

